PCI Big Beam Contest



CMW Engineering, Inc.

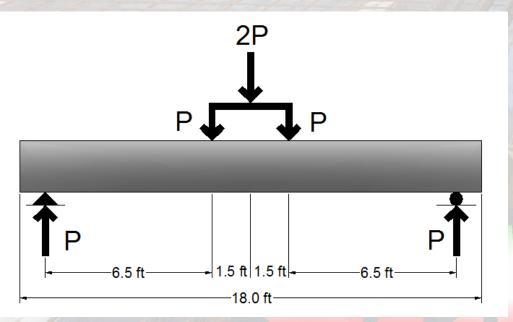
Wael Alqattan
Chad Dietrich
Mengxi Du

Purpose

- Effectively design a prestressed/reinforced concrete beam
- Meet parameters set by PCI Contest
 Committee
- Coordinate with PCI Producer Member
- Beam will be tested, analyzed and judged

Prestressed Background

- Precast has innovated the structural industry
- Prestressed concrete is the process of prestressing concrete with strands
 - Allows for a higher ultimate capacity as well as a higher deflection



Algattan, 2013

PS

Contest Parameters/Existing Conditions

- 18 ft long, prestressed, precast beam that is simply supported over 16 ft
- Design for
 - Cracking above service load (22 kips)
 - Fail above factored load (35.2 kips) and below peak load (42 kips)
- Judging Criteria
- Few Constraints

Technical Objectives

- Design of Prestressed Beam
 - Design, analysis, testing, results and report
- Research Existing Projects
- Acquire additional knowledge outside of the undergraduate curriculum

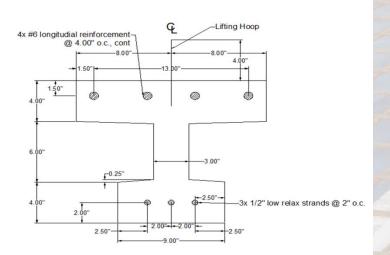
Challenges

- Rules and Parameters given by PCI
- Communication with Client
- Testing accuracy
- Deadlines set forth by PCI Big Beam

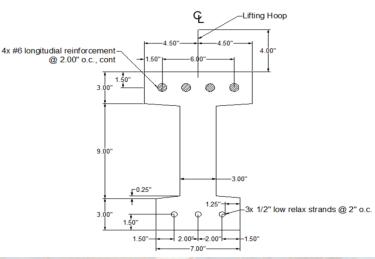
Competition

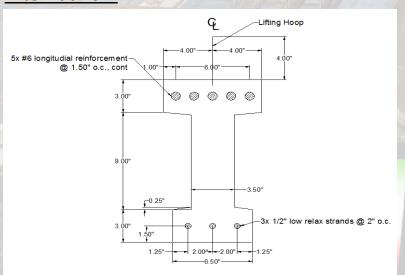
Preliminary Analysis

- Microsoft Excel was utilized
 - Made interactive
 - Concrete properties and dimensions inputted
 - Received cracking moment, ultimate moment and deflection
- Given the moments structural analysis was used to determine the loads
- Response 2000 was utilized to determine accuracy of spreadsheet


Response 2000

Alternatives


Alternative 1


Alternative 3

Alternative 2

Alternative 4

Alternative Comparisons

Alternatives	Concrete Mix	Unit Weight (pcf)	Cracking Load (kips)	Ultimate Load (kips)
1	Normal	146.1	31.88	38.34
2	Normal	146.1	34.48	38.22
3	Lightweight	124.6	33.04	35.23
4	Lightweight	124.6	22.56	37.15

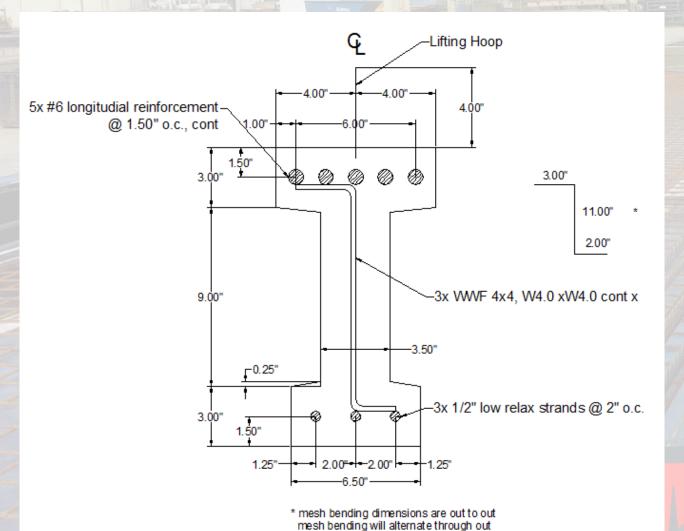
*f'c = 8,000 psi ** f'ci = 6,000 psi

Dietrich, 2014

Selected Design

	_						Practiality/		
Decision Matrix							Innovation/		
		Deflection (in)**	Weight (lb/ft)**	Cost (\$)**	P Crack (kip)	P Ult. (kip)**	Conformance With Code	Release	Factored Total
Beam Option	Weight*	15.00	15.00	10.00	30.00	20.00	5.00	5.00	100.00
Alt. 2	Actual	6.12	81.42	613.82	32.42	36.72		OK - 100	
Beam NW	Weighted Value	11.28	12.01	10.00	30.00	19.90	2.00	5.00	90.19
Alt. 4	Actual	8.13	65.17	627.53	30.42	36.54		OK - 100	
Beam LW	Weighted Value	15.00	15.00	9.78	30.00	20.00	3.00	5.00	97.78

*Sum of weighted values eqauls 100


- Alternatives were placed into two groups according to their concrete mix
 - Normal weight Alternative 2
 - Lightweight
 Alternative 4
- Compared by weighted values of importance
- Alternative 4 is best option

** Weighted Value = $\left(\frac{Lower\ Value}{Larger\ Value}\right) * Weight_{10}$

Final Design

- Due to manufacturer restrictions, f'ci < 6,000 psi
- Concrete Mix Design
 - Lightweight: 130 pcf
 - Self consolidating concrete
 - Compressive strength at release: 5,000 psi
 - Compressive strength at ultimate: > 6,000 psi
- Steel Components
 - 5 #6 compressive reinforcement steel through out
 - 3 0.5 in. prestressed strains through out
 - 3 Wielded Wire Mesh

Final Design

Beam Manufacturing

Alqattan, 2014

Alqattan, 2014

Pre-Test Analysis

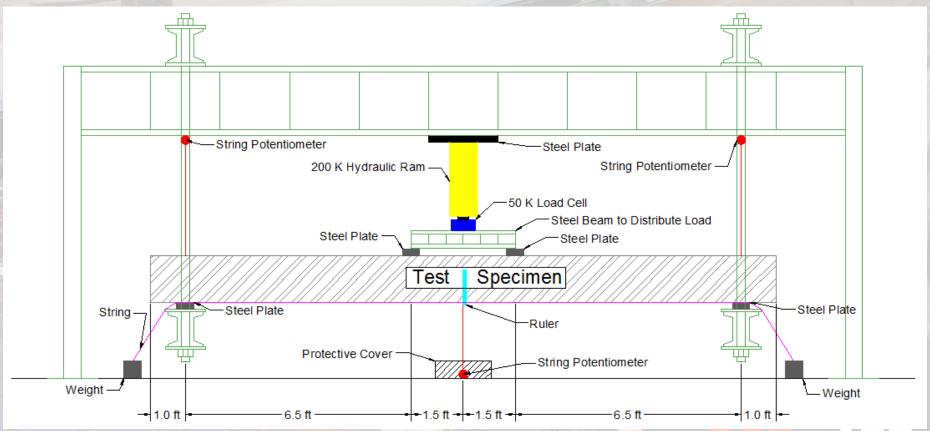
6 - 4" by 8" cylinders

Compression Strength Test

Alqattan, 2014

Split-Cylinder Tensile Test

Alqattan, 2014

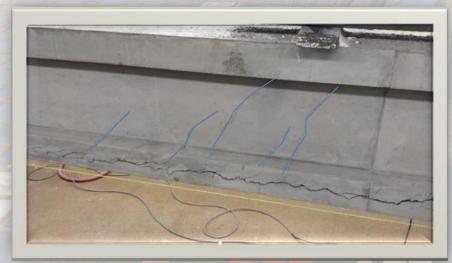

Predicted Figures

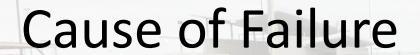
- Compression Test Results
 - Average Strain: 0.00291 in./in.
 - Average f'c: 8.58 ksi
 - Average Ec: 4244.79 ksi
- Split-Cylinder Tensile Test Results:
 - Average Tensile Strength:
 0.57 ksi
 - Flexural Tensile Strength:
 0.71 ksi

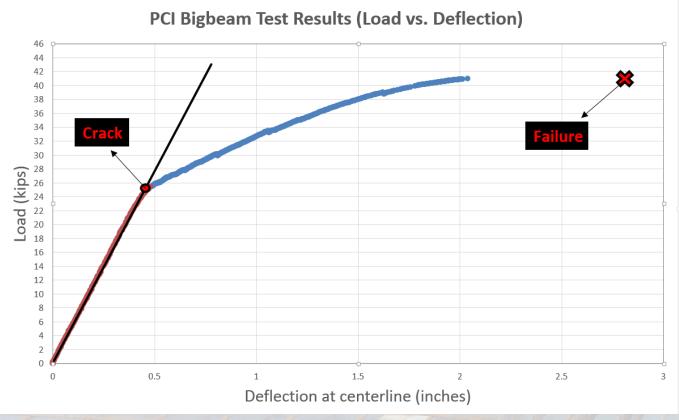
- Predicted Loads
 - Cracking = 31.4 kips
 - Ultimate = 39.0 kips
- Deflection
 - At ultimate load = 4.6 in

Testing

- Applied load measured by 50 K load cell
- Actual deflection measure by string potentiometers
- All values imported into computer to develop a Load vs. Deflection graph


Pre-Test


After Failure



Algattan, 2014

Post Test Analysis

Actual Loads

- Cracking = 25.6 kips
- Ultimate = 41.0 kips

Actual Deflection

- At ultimate = 2.8 in.

Du, 2014

Predicted and Actual Comparisons

	Predicted Value	Actual Value	Percent difference
Cracking Load	26.4 kips	25.6 kips	3.0%
Ultimate Load	39.0 kips	41.0 kips	5.0%
Deflection	4.6 in.	2.8 in.	39%

Du, 2014

Cost

Individual Labor Cost						
Staff Position	Project Engineer	Engineer 1	Data/Analyzation Technician			
Base Pay (\$/hr)	150	90	65			
Benefits (%)	30	36	20			
Actual Pay (\$/hr)	195	125	78			
Profit (%)	10	10	10			
Total (\$/hr)	215	135	86			

			/	etreer 1	Salthi Salthid Adna Water 1
		ertead Pr	Tig	Mer.	5351 nation
nd afte		200	1		AnaM Der
Tade Hare	6	er.	8 / L	Sign Oak	St. Ost
Final Design and Analysis					
Choose Alternative		1	1	2	\$522.0
Develop Shop Drawing	1	4	6	10	\$2,680.0
Response 2000 Report				12	\$1,032.0
Beam Fabrication					
Shop Drawings Sent to Client		1			\$215.0
Beam Manufacturing					\$1,184.7
Beam Transportation					\$500.0
Beam Testing					
Predition Analysis (Response	1	4	6	10	\$2,680.0
Test Preperation		2	4	12	\$2,002.0
Testing		1	2	4	\$829.0
Analyze Results	1	4	2	12	\$2,312.0
		Total	Labo	or Cost	\$13,956.7

21

Dietrich, 2014

Cost

Labor & Materials Costs					
Final Design and Analysis					
Analysis	\$4,234.00				
Computer Programs	\$250.00				
Design Phase Subtotal	\$4,484.00				
Beam Fabrication and Testing					
Beam Materials	\$1,184.71				
Beam Fabrication	\$1,899.71				
Beam Testing	\$7,823.00				
Testing/Analysis Phase Subtotal	\$9,722.71				
Subtotal Cost					
	\$14,206.71				
Profit					
Profit of 10%	\$1,420.67				
Total Cost	\$15,328.00				

Project Impacts

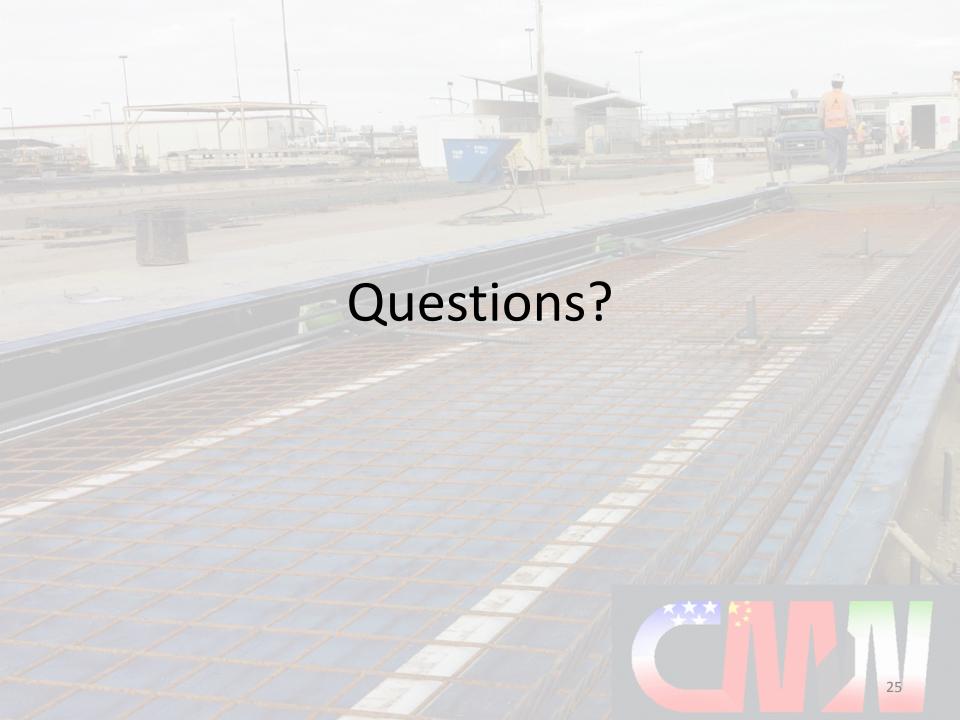
Environmental

- Precast facilities are better equipped to discard hazardous waste
- Concrete forms can be used multiple times
- Minimum transport of concrete mixes reduces concrete waste

Educational

- Acquired prestressed concrete knowledge
- Established good relationships with professionals

Acknowledgements


- Abdullah Kassab of TPAC
- Dr. Robin Tuchscherer of NAU
- PCI Student Education
 Committee

http://www.merchantcircle.com/business/Tpac.A.Division .of.Kiewit.Western.Co.602-262-1360/picture/view/621290

Alqattan, 2013

